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The influence of transverse shear on the 
static flexure and Charpy impact response 
of hybrid composite materials 
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Classical laminated anisotropic plate theory, extended to include the effects of transverse 
shear, is applied to the three-point beam bending problem, to determine the deflections 
under load, hence flexural modulus, and also the energy absorbed by the beam to the 
point of peak load, i.e. to first failure. A standard unnotched Charpy impact specimen 
configuration, constructed of a multi-lamina hybrid composite material, is analysed. 
Transverse shear is shown to have a significant influence on the response. The analytical 
results are compared with experimental data, for both impact and static Ioadings. A 
definite loading rate dependence is observed. 

1. I n t r o d u c t i o n  

A previous investigation [1,2] had shown that in- 
clusion of third-phase supplementary reinforcing 
fibres within graphite/epoxy composite materials 
can significantly increase the impact properties of 
these materials. A considerable amount of exper- 
imental data was gathered, some of which indi- 
cated that as much as a 550% increase in impact 
resistance can be gained by incorporating S glass 
fibres into the basic graphite/epoxy material 
[1,21. 

In a continuing effort to further improve the 

impact properties of graphite/epoxy composites, 
several different third-phase supplementary ma- 
terials were used in a more recent study [3 ,4] .  
This investigation also included an analytical study 
of the impact behaviour of these materials [5]. In 
these studies, composites containing third-phase 
reinforcing materials have been termed hybrid 
composites, a term which will also be used in this 
paper. 

The effects of specimen geometry and rate of 
loading on the Charpy impact response of hybrid 
composites were also studied in the most recent 
investigation [3, 4]. Some very interesting results 
have been obtained, which indicate that both the 
rate of loading and the specimen geometry of the 

impact specimen have profound effects on the test 
results. An analysis of this response, which is pre- 
sented here, indicates that the shear stress devel- 
oped within the test specimen is a major par- 
ameter, causing the geometry of the specimen to 
be a critical factor in the test results. 

2. Material description 
The basic graphite/epoxy composite system was 
fabricated from Modulite 5206 graphite/epoxy 
prepreg. Modulite 5206 consists of unidirectional, 
collimated Modmor II graphite fibres impregnated 
with Narmco 1004 epoxy resin. The prepreg was 
purchased from Whittaker Corporation in Type 2 
(broadgoods) form. This material is fully charac- 
terized, and well-documented mechanical strength 
data exist for this material [1 ,2] ,  providing a ref- 
erence point for the evaluation of data generated 
within the present study. 

Four supplementary, third-phase reinforcing 
materials were used in the present study. These 
supplementary materials included Style 120 glass 
cloth, 200 mesh aluminium wire, 0.13 mm ti- 
tanium foil, and $2 glass yarn. The aluminium 
mesh, 120 glass cloth and $2 glass yarn were im- 
pregnated with the same Narmco 1004 resin sys- 
tem used in the baseline Modulite 5206 material. 

* Also Consultant, Aeronutronic Division, Aeronulxonic Ford Corporation, Newport Beach, California, USA. 
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The third-phase materials were added to the basic 
laminated system as discrete plies dispersed 
through the laminate thickness. 

The construction of the Modulite 5206 control 
laminate consisted of a basic thirteen-ply repeating 
set. The orientation of  the fibres was arranged 
with two plies at 0 ~ plies at +45 ~ and --45 ~ two 
plies at 0 ~ one ply at 90 ~ two plies at 0 ~ plies 
at -45  ~ and +45 ~ and two plies at 0 ~ In accord- 
ance with [6], the above composite laminate is 
identified as [0J-+45/0~J90/0J~45/02]. Speci- 
mens of two different thicknesses were fabricated. 
Thick specimens consisted of four sets of the basic 
orientation, and thin specimens consisted of only 
one set of the basic lay-up pattern. 

The hybrid composite systems were fabricated 
using a basic fifteen-ply repeating set. The plies 
wer e consonantly aligned in the following array: 
[O/Ot/+45/ot/o2/90/O2[Ot/T-45/ot[o]. The plies 
without superscripts consisted of Modulite 5206 
graphite/epoxy, while superscript t indicates plies 
of one of the third-phase reinforcing materials. 
The hybrid test specimens were also fabricated as 
thick and th in  spechnens, the thick specimens 
consisting of four of the basic fifteen-ply sets, 
while the thin specimens were composed of only 
one set. A more detailed description of the fabri- 
cation procedure and the mechanical properties 
of the various constituent materials can be found 
in [3]. 

3. Test procedures 
Instrumented Charpy impact tests, which yield 
a continuous load-time history of a standard 
Charpy impact test, were performed on all of the 
material systems discussed above. This load-time 
trace allows the Charpy impact test to become a 
dynamic three-point flexure test, i.e. it makes 
available a complete loading history of the par- 
tictflar specimen just as a static flexure test does. 
Therefore, in order to recognize the parameters 
which differentiate the behaviour of hybrid com- 
posites when subjected to quasi-static versus dy- 
namic flexurai loadings, "static" three-point flex- 
ure tests were also performed on test specimens of 
dimensions identical to the Charpy specimens. All 
impact and flexural test specimens were un- 
notched. 

The support span used in the flexure test was 
the same as that for a standard Cha119y impact test, 
i.e. 40 mm (1.57 in.). The specimens referred to 
here as thick specimens were of approximately the 
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same dimensions as a standard Charpy impact 
specimen, i.e. 55 mm long and 10 mm square in 
cross-section. Results of a previous investigation 
[1, 2, 5] indicated that the geometry of a stan- 
dard Charpy impact specimen has an influence on 
the test results. Therefore, thin specimens were 
also fabricated and tested in both impact and 
static flexure. Becauseof their smaller thickness, 
the thin specimens had a much larger (approxi- 
mately four times greater) support span-to- 
specimen thickness ratio than did the specimens 
which were of approximately the dimensions of a 
standard Charpy specimen (the thick specimens). 
It has become evident from the present static flex- 
ural test data that the geometry of the test speci- 
men does indeed have a profound effect on the 
test results. Further detailed discussion of 
phenomena possibly responsible for the type of 
behaviour observed, based on the analysis to be 
presented here, is contained in the following 
sections. 

4. Analysis of flexure stresses 
The typical load-time trace obtained from an in- 
strumented Charpy impact test may be partitioned 
into two regions: the initial region of increasing 
toad (to the point of peak load), and the region 
following peak load. It has commonly been as- 
sumed, at least until the present time, that the 
point of peak load is contiguous with the event of 
first fracture. 

The load-time trace of an instrumented 
Charpy impact test may easily be converted to a 
load-defection trace by simply multiplying the 
time axis by the striking velocity of the pendulum, 
assuming of course that the striking velocity re- 
mains essentially constant throughout the fracture 
event. The load-deflection traces obtained from 
the static flexural tests were very similar in shape 
to the traces obtained from the instrumented 
Charpy hmpact tests. 

The load-time traces obtained from the in- 
strumented Charpy impact test for the hybrid ma- 
terials used in the most recent study [3, 4] were 
also very similar in appearance to the load-time 
traces previously obtained [1, 2]. 

The upper photograph of Fig. 1 shows a typi- 
cal load-time trace for a Modulite 5206 graphite[ 
epoxy control specimen tested in the longitudinal 
direction. The lower photograph shows a typical 
load-time trace of a hybrid composite containing 
discrete plies of S2 glass/epoxy dispersed through, 
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Figure 1 Instrumented impact load and energy wave forms. 
(b) Modulite 5206 $2 glass hybrid, longitudinal configuration. 

out the thickness of the specimen, also tested in 
the longitudinal direction. The monotonically in- 
creasing trace shown in each of the photographs is 
the electronic integration of the load-t ime trace 
after the load-t ime curve has been converted to a 
load-deflection curve, and represents the energy 
input to the specimen to a given time. Note the 
difference between the two photographs in terms 
of the scales of the load and energy values. 

It was assumed in the work reported in [5] that 
no fracture occurred within the test specimen until 
the point of maximum load had been reached. It 
was also assumed that the energy represented as 
the area beneath the load-deflection curve to the 
point of maximum load equalled the strain energy 
stored within the specimen. However, depending 
upon the specific test, the calculations performed 
in [5] accounted for only approximately 17 to 
72% of the total energy represented by the area 
beneath the load-t ime trace to the point of maxi- 
mum load. 

All the tests reported in [5] were Charpy im- 
pact tests, no static flexure tests being conducted. 
At that time it was not well-understood whether 
the additional energy which resulted from inte- 
gration of the load-deflection curve to the peak 

Figure 2 Flexure specimen configuration. 

(a) Modulite 5206 control, longitudinal configuration. 

load resulted from possible energy dissipation 
mechanisms unique to impact tests, or if all of the 
strain energy stored within the specimen had not 
yet been fully accounted. 

A preliminary step toward accounting for all of 
the energy dissipated by a Charpy impact speci- 
men was taken by calculating the amount of strain 
energy which is stored within a thick static three- 
point flexure specimen to the point of initial frac- 
ture (i.e. to the point of maximum load). The 
thick flexure specimens were of the same dimen- 
sions as the standard Charpy impact specimens. 
The same basic procedure as reported in [5] was 
used to calculate the amount of strain energy 
stored within a specimen due only to flexure 
stresses. Some refinements were instituted in the 
present calculations, however. For example, it was 
assumed in the previous study that most of the 
strain energy which was stored by the composite 
to the point of initial fracture was stored by the 
fibres, which carry most of the load and thus are 
at a higher stress than the surrounding epoxy 
matrix. Therefore, only the longitudinal normal 
stresses in the direction of the fibres within each 
lamina of the specimen were considered. 

The specimen configuration and co-ordinate 
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axes arrangement chosen in the current calcu- density throughout the total volume of the beam, 
lations are shown in Fig. 2. The longitudinal nor -~ i.e. 
real stress parallel to the fibre direction within 
each lamina is designated Ol, while the longitudi- 
nal stress parallel to the major axis of the beam is 
designated Ox. It was concluded in the present 
study that the strain energies resulting from the 
transverse normal Stresses 02 and the in-plane 
shear stresses rl2 within each ply should also be in- 
cluded. The total strain energy density resulting 
from the flexure stresses thus becomes 

U ' - - � 8 9  k k  k k [ale1 +oee2 +r1271~] (1) 

where oI and e~ are the normal stress and strain in 
the kth ply in the direction parallel to the fibres, 
and o~ and e~ are the normal stress and strain in 
the kth ply in the direction perpendicular to the 
fibres. The terms r12 and 7~2 are the shear stress 
and shear strain in the x - y  plane of the beam. 

Each ply of the laminated composite beam (the 
test specimen) is considered to be an orthotropic 
material. Therefore, the strains in the 1- and 2-axis 
directions are (assuming a plane stress condition) 
related to the stresses by the generalized Hooke's 
law as 

1 

1 
e2 = ~-= [a2 - -  v,2 o, l (2 )  

g12 712 - 
G12 

where E 1 and E2 are the elastic moduli in the 1- 
and 2-axis directions, respectively, G12 is the shear 
modulus in the 1-2 plane, and P12 and v21 are the 
major and minor Poisson's ratios. Substituting the 
expressions for the strains of Equation 2 into 
Equation 1, using the fact that u~/E2 = v2~/E~, 
and assuming that the elastic moduli of the plies 
are the same in tension and compression, one ar- 
rives at the following expression for the strain en- 
ergy resulting from the three flexural stress 
components, i.e. e l ,  a2, and r12 : 

O) 
The strain energy within the beam is then obtained 
by integrating this expression for strain energy 

U = /~ dA dx (4) 

where s is the total span length of the beam and A 
is the cross-sectional area. It is assumed, since the 
thickness of each individual ply of the laminate is 
small compared to the total thickness h of the 
beam, that the stresses are essentially constant 
throughout the thickness of each ply. The bending 
moment in the beam is a linear function of the 
distance x from the end of the beam. Each of the 
stresses can be eXpressed as 

oI  - 2o 0x 
S 

a~ - 2~oX (0 <. x <~ s/2) (S)  
S 

2~20x 

8 

where O o, and r ,2o are the maximum lon - 
tudinal  normal, transverse normal and in-plane 
shear stresses, respectively, developed within the 
kth ply of the beam, these being located at the 
midspan cross-section of the beam where the mo- 
ment for a three-point flexure specimen is maxi- 
mum. Substituting the expressions for the stresses 
of Equation 5 into Equation 3, and then using this 
result in Equation 4, yields the following ex- 
pression for the strain energy stored within a lami- 
nated composite beam due only to the flexure 
stresses: 

n 
S 

E A  
k = l  

[ e; + + T U J  (6) 

where A k is the cross-sectional area of the kth ply 
of the laminate, s is the total span length of the 
beam, and n is the total number of plies in the 
laminate. 

The fourth column of Table I lists the values 
for the strain energy due to flexure stresses for 
each of the materials and specimen configurations, 
as calculated using Equation 6 and normalized by 
dividing the calculated energy values by the cross- 
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TAB LE I Thick flexure specimens: strain energies at failure initiation (normalized)* 

Material Specimen 
designation con- 

figuration 

Experimentally Calculated Calculated Total Experimental 
determined flexural transverse calculated strain energy 
flexural strain shear strain strain as integrated 
modulus energy energy energy beneath the 

load -deflection (GNm -2) (106 psi) (kJm -2) (ft-lb (kJm -2) (ft-lb (kJm -2) (ft-lb 
in.-2 ) in.-2 ) in._ 2 ) curve 

(kJ m-2 ) (ft-lb 
in. -2 ) 

5206 longitudinal 40 5.8 7.36 3.5 10.30 4.9 17.66 8.4 17.44 8.3 
control transverse 14 2.1 7.78 3.7 8.20 3.9 15.98 7.6 14.92 7.1 

5206/120 longitudinal 37 5.3 7.36 3.5 8.41 4.0 15.76 7.5 15.97 7.6 
glass  transverse 17 2.5 7.57 3.6 8.62 4.1 16.18 7.7 15.97 7.6 

5206/A1 longitudinal 26 3.8 4.20 2.0 6.94 3.3 11.14 5.3 11.77 5.6 
transverse 13 1.9 6.09 2.9 6.52 3.1 12.61 6.0 11.98 5.7 

5206[$2 longitudinal 35 5.1 4.62 2.2 6.31 3.0 10.93 5.2 10.72 5.1 
glass  transverse 15 2.2 6.09 2.9 5.04 2.4 11.13 5.3 ,10.93 5.2 

5206/Ti longitudinal 6 0.90 0.08 0.04 1.49 0.71 1.57 0.75 1.47 0.70 
transverse 5 0.76 0.11 0.05 0.99 0.47 1.10 0.52 1.05 0.50 

* Typically an average of three test specimens. 

sectional area of  each specimen. Calculations were 
also performed neglecting the strain energy re- 
suiting from the transverse normal stresses and the 
in-plane shear stresses. It was discovered that the 
results o f  including the strain energy developed by 
the transverse normal stresses and in-plane shear 
stresses were more pronounced for the transverse 
specimens than for the longitudinal specimens. For 
example, the total strain energy calculated for the 
thick 5206 control specimens in the transverse 
configurations (normalized by dividing by the 
cross-sectional area of  the specimen) was 7.71 
k J m  -2 (3.67ft- lbin.  -z)  when the transverse 
normal and in-plane shear stresses were included. 
Only 5 . 7 8 k J m  -2 (2.75 ft-lbin. -2) of  normalized 
strain energy was calculated for dais specimen 
when just the longitudinal normal stresses were 
considered. However, the calculated strain energy 
stored within the longitudinal specimens o f  the 
5206 control panel was only increased from 7.12 
k J m  -z (3.39 ft-lb in. -2) to 7 . 4 2 k J m  -2 (3.53 ft-lb 
in.-2 ) when the additional stresses were considered. 

The values of  the normalized strain energy 
listed in the fourth column of  Table I represent 
calculations which include the transverse normal 
stress o2 and the in-plane shear stress r12. The 
values o f  the maximum stresses within each ply of  

k the laminate o~o, o~o and rlZo, were obtained 
with the aid o f  Computer Program AC-3 [6] ,  in 
the manner described in [1] .  

The load-def lect ion curves for the thick static" 
flexure test specimens were all linear to the point 
o f  maximum load. (The point o f  maximum load 

was assumed to coincide with initial fracture of  
the specimen.) Therefore, the elastic strain energy 
(integrated as the area beneath the load-deflect ion 
trace) to the point of  maximum load can be cal- 
culated from the following expression (see any 
energy methods text): 

Efbt~a (7) 

where Ef is the experimentally determined flexural 
modulus of  the beam, P is the maximum load that 
the specimen can withstand, b is the width o f  the 
specimen, and h is the thickness of  the specimen, 
as illustrated in Fig. 2. 

The values of  the experimentally determined 
flexural modulus of  each material and specimen 
configuration are listed in the third column of  
Table I. The values of  the energy integrated 
beneath the load-deflect ion traces for the thick 
static flexure specimens are listed in the last 
column of  Table I. It is clear that the calculated 
values for the strain energy developed from just 
the flexure stresses within the thick flexure 
specimens (listed in the fourth column of  Table I) 
are only from 6 to 54% as large as the energy inte- 
grated beneath the load-deflect ion traces. If  the 
results of  the Modulite 5206/Ti panels are neglected 
in the comparison, the values listed in the fourth 
column are from 40 to 54% as large as the energy 
values listed in the last column. Neglecting the 
Modulite 5206/Ti hybrid panel values may be 
justified since the thick panels of  this material 
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exhibited several anomalous traits associated 
with excessive delaminations [3 ,4] .  

Ignoring the values of the Modulite 5206/Ti 
panels, the comparison of the calculated strain 
energy due only to the flexure stresses to the 
energy values which represent the energy beneath 
the load-deflection curve to the point of maxi- 
mum load is in good agreement with the similar 
comparison made for the Charpy impact speci- 
mens reported in [5]. These calculated strain 
energies clearly do not account for the total 
energy obtained by integrating the load-deflection 
curve to the point of initial fracture. Therefore, it 
was concluded that either part of the energy 
beneath the load-deflection curve was dissipated 
in another manner, or some of  the strain energy 
was as of yet unaccounted. 

Data obtained from the "static" flexural test of 
the thin specimens indicated that transverse shear 
substantially affected the flexural moduli of the 
material systems. Although none of the test data 
for the thin test specimens will be presented here, 
it was evident, by comparing the fiexural moduli 
values of the thin static flexural specimens to the 
thick static flexural specimens, that the moduli for 
the thin specimens were much greater than the 
moduli for the thick specimens of a corresponding 
material. As will be seen from the equations 
derived in the following analysis, the effect of 
transverse shear strain is to increase the deflection 
of a specimen tested in flexure, thus reducing the 
flexural modulus. The transverse shear strain be- 
comes greater as the length-to-depth ratio, s/h, of 
a specimen decreases, therefore the effective 
flexural moduli of the thick test specimens were 
proportionately reduced when compared to the 
thin specimens. 

Also, the thick ftexural test specimens failed in 
a manner which resulted in numerous interlaminar 
delaminations, indicating the transverse shear 
stress had exceeded the shear strength of the 
material. The Charpy impact specimens reported 
in [1] and [2] also failed in this manner. If the 
failure had been caused entirely by flexural 
stresses, then fibre failures would have predomi- 
nated and a cleavage failure of the specimens 
would have resulted, with a very small number of 
delaminations resulting. 

Although the thin test specimens which were 
used in the present study still contained more de- 
laminations than had been expected, the data 
clearly indicated that the geometry of the test 
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specimens had a definite effect on the test results. 
In any case, it seemed logical, since there is no 

energy dissipating inertia effect associated with the 
static fexure tests, that the shear strain energy 
contributed by the transverse shear stresses should 
be included in the present calculations also. 

5. Effects of transverse shear on strain 
energy 

If the assumption is made that only minor 
amounts of damage occur within the test speci- 
men to the point of initial fracture, then there 
must exist more stored elastic strain energy within 
the beam than is accounted for by the flexural 
stresses alone. One such source of elastically stored 
energy which hitherto had been ignored is the 
strain energy associated with the transverse shear 
strain 7xz. 

In order to calculate the strain energy associated 
with the transverse shear strain, one must be able 
to evaluate this strain. No means exists, using 
classical laminated plate theory, to evaluate the 
shear strain 7xz. Classical laminated plate theory is 
based on the Kirchoff hypothesis, and the assump- 
tion that the plate under analysis is sufficiently 
thin to be considered in a state of plane stress. 
Under these conditions the transverse shear strain 
%r is assumed to be negligible. However, Pagano 
[7] has formulated exact solutions, based on 
anisotropic elasticity theory, of the behaviour of 
laminated plates and beams when subjected to 
cylindrical bending, i.e. when the specimen is 
assumed to be in a state of plane strain with 
respect to the x - z  plane and the applied transverse 
traction on the surface of the beam is assumed to 
be constant in the y-direction (see Fig. 2). 
Pagano's solutions may be used to arrive at 
expressions for the displacements associated with a 
beam, from which the strains may be calculated. If 
the surface traction is expressed as a Fourier series, 
Pagano's analysis requires the solution of4n simul- 
taneous algebraic equations. The term n represents 
the total number of plies in the laminate, and has a 
value of 60 for the thick hybrid panels considered 
in the present study. The formulation and sub- 
sequent solution of the 240 algebraic equations 
necessary for each of the materials and specimen 
~onfigurations used in the present study was con- 
sidered to be excessive. Therefore, an approximate 
method, which is based on an extended classical 
laminated plate theory in which the transverse 
shear strain may be calculated, was used. 



Whitney [8], in formulating this approximate 
method, has also shown that the solutions repre- 
senting the behaviour of laminated plate in cylin- 
drical bending are very close to the exact solutions. 
This approximate method assumes the displace- 
ment field in a plate to be 

u = u ~  + z % ( x , y )  

v = v ~  + z % ( x , y )  

w = w ( x , y )  (8) 

where u, v and w are the displacements in the x-, 
y-, and z-directions, respectively. The quantities 
q~x and qt r may. be viewed as analytic functions 
from which the plate curvature function P may be 
determined. As will be seen later, these functions 
must be evaluated such that they are consistent 
with the boundary conditions of the problem. For 
cylindrical bending along the x-axis, u ~ and v ~ are 
the displacements of the midplane of the plate. 
The strain field is obtained from the classical 
elasticity definitions relating the displacements 
and the strains. The strains are: 

o + z P x ,  e ,  = e ~ + z r ,  e x = C x 

3'xy = 7 ~ +zPxs ,  7xz = k lY~  

7sz = k:Y~ (9) 

where 

0 ~ /AO 60 = uO 
CX ,X ,y  

Toy = U 0 4-V o ,y ,x r .  = ,I,,~,,~ 

p ,  = % , ,  r x ,  = % , ,  + % , ~  

o + '#x 7 0 7xz = W,x yz = w,y + qJy 

A subscript comma denotes differentiation with 
respect to the subscripted variable immediately 
following it. Whitney calls the terms kl and k2 the 
shear correction factors; these account for the fact 
that the transverse shear stress is not uniform 
throughout each ply of the laminate. 

Whitney then substituted the strain and 
curvature expressions of Equations 9 into the 
following constitutive relationships derived from 
classical laminated plate theory : 

[ ~ ]  = [ . ~ . : . ~ . ]  [;01. (10) 

The elements of the vector l~are the normal forces 
per unit width applied to the plate, the elements 

of the vector 1~t are the moments per unit width 
applied to the plate, e ~ is the midplane strain, and 
P is  the curvature function of the plate. The values 
of the elements of the matrices A, B, and D are 
given as 

h 

[A,j,Bo, Dd 
2 

(i , j  = 1 ,2 ,6)  (11) 

where ~ is an element of the reduced material 
stiffness matrix of the kth ply. In performing this 
substitution and expanding the matrix multipli- 
cations, Whitney expressed the governing relation- 
ships for a plate in cylindrical bending along the 
x-axis as follows: 

AllU~ + B16 xlly,xx = 0 

A66V?x x + Bl6'ffdx,xx = 0 

k2Ass (~x,x + W,xx) + P = 0 

B26V?xx + D n  ~x,xx + D16 x'Iry,xx 

- k~]Ass (%: + w , . )  = 0 

B16u~ + D~6 *x,xx -k O66 v~y,xx " k~A44 q~y = 0 

(12) 

where the coefficients Ai.i, Bij and Dij are the 
terms of the A, B and D matrices of Equation 10. 
The term p is the load, i.e. surface traction, distri- 
bution along the length of the beam and is a 
function o fx  only. 

By assuming that the load p(x)  is constant in 
the y-direction, i.e. that the load is symmetrically 
applied about the x - z  plane, then the three-point 
flexure specimen may be assumed to be in a state 
of generalized plane strain. The strains in the y- 
direction, i.e. ey, 3'zy and 7xs, are assumed to be 
negligible for generalized plane strain conditions. 
Thus one finds for these conditions, from 
Equations 9, that qJy = 0. The hybrid material 
systems considered during the present investi- 
gation were all symmetric with respect to the mid- 
plane of the specimen so that all of the coefficients 
Bij in Equations 12 are zero. 

By definition, the terms D16 and D26 would be 
zero if, for every ply above the midplane of a 
laminate with the fibres oriented at an angle + 0 
with respect to the x-direction, there exists a ply 
below the midplane with the filaments oriented at 
an opposite angle, --0, However, symmetrical 
laminates, such as these used in the present study, 
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contain plies with the filaments aligned at the 
same angle at equal distances above and below the 
midplane. The terms D16 'and D~s will be small, 
however, if  the laminate is constructed such that 
two adjacent angle plies within the laminate are 
oriented at opposite angles, and there exists a 
large number of plies within the laminate. For this 
type of arrangement, the effects o n  O 1 6  a n d  D26 
of a ply oriented at an angle + 0 above the mid- 
plane will be almost nullified by a ply oriented 
at an opposite angle --0 located adjacent to the 
mirror + 0  ply below the midplane. This was 
exactly the type of  laminate lay-up pattern used 
Ln the present study, and the terms D16 and D26 
were relatively small. In fact, for all of  the hybrid 
material systems considered, the terms D~6 and 
D26 were at least an order of  magnitude smaller 
than the terms Dn  and De~. Neglecting the terms 
involving D16 and D26 in Equations 12, the 
governing relationships fora  beam reduce to 

Anu~ = 0 

k~Ass ('~x,x + W,xx) + p(x)  = 0 

+ w x )  = O. (13) 

The boundary conditions for the simply 
supported flexure specimen shown in Fig. 2 are: 

w = N x = Nxr = M x = Mxy = O, 

at x = 0 and x = s. (14) 

A load such as is shown in Fig. 2 may be 
expanded in a Fourier series as 

p(x)  = ~ Pm sin m____~, (m = 1,3,  5. . .). 
m S 

(15) 

The coefficients of  each of the expansion terms 
a r e  g i v e n  a s  

4p0 sin mrrff__ sin rnrcb__ (m = 1,3, 5. . .) 
Pm = m--'~ s s ' 

(16) 

where Po is the load intensity, a-is the location of 
the centre of application of the load, and 2b-is the 
length of  the beam over which the load is applied. 
Pagano and Wang [9] have used the same type of 
expansion for a similarly loaded beam in applying 
the exact solutions of  [7]. They used a value of 
0.02s for b- when approximating a concentrated 
load at the midspan of the beam and found this 
value to be quite satisfactory. The value of ~-is 
0.5 s for all cases in the present study. 

With the load p(x)  expanded as shown in 
Equation 15, solutions to Equations 13 which 
satisfy the boundary conditions of Equations 14 
are: 

m ~ x  
u~ = A , .  c o s - -  

rn S 

m ~ x  
~x(x) = ~  C m c o s - - ,  (m = 1,3, 5 . . . )  

m $ 

w(x) = ~ E m sin m~rx (17) 
rn S 

where Am,  Crn and E m are arbitrary" constants 
which must be determined. The solutions repre- 
sented by Equations 17 are then substituted into 
the reduced governing equations of the beam, 
Equations 13. The first of  these equations becomes 

Z l l Z r n m 2 7 r  2 m T r x  
c o s -  = 0 ,  

m g s 

(m = 1 , 3 , 5 . . . ) .  (18) 

Since each term cos (mrrx/s) is not, in general, zero 
for all values of x along the length of the beam, 
the only way Equation 18 can be true for all 
values of  x is if  each of  the coefficient terms is 
zero, i.e. i f  

A alArnm21r 2 
- 0,  (m = 1 , 3 , 5 . . . ) .  (19)  

S 

However, Axl and rn are never zero, so it follows 
that A m = 0 for all m, and therefore u~ O. 
The last two of Equations 13 have the form 

~m[Pm k~Assm~r(Cms Emsmn)] sinmrrxs 

and 

= 0  

[(Dalm2rc 2 rnrrk~AssEmJ 

mlrx 
c o s -  = 0. (20) 

$ 

Again, each of the coefficients of the terms 
sin (mrrx/s) and cos (mTrx/s) must vanish for each 
value of m. Therefore, each of the coefficients Cm 
and E m can be expressed in terms of the load 
coefficients Pm as follows: 

p r o s  3 

Cm - m3 rr3 D !l (21) 
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and 

Em _ prns 2 ( 1 S 2 ) 
m2.  ~ k~As-----~ + m : ~ D .  " 

Thus, the solutions to the governing equations 
of  the beam, Equation 13 become 

uO = 0 

- -  ~m Pms 3 mrcx 
qdx = m37r3Dn cos , 

S 

(m = 1 , 3 , 5 . . . )  

w = ~m ~ k]As--~5 +rn:27r2Dn s i n - - s  (22) 

where the values of Pm are given by Equation 16. 
The strain energy density of the kth ply 

resulting from the transverse shear strains 
developed in a flexure specimen assumed to be in 
cylindrical bending is 

0 ~ = � 8 9 1 7 6  ~ = ' k a =  ( r ~ ) :  (23)  

The transverse shear strain energy in the kth ply is 
thus 

fzi  fob fo '12  : ~ "2 = ~kx ~ss("&z) dy de. 
-I (24) 

Since the shear correction factor kl is a constant 
and the function o ~,,~ is a function o f x  only, for a 
beam in cylindrical bending, integration of 
Equation 24 in the z- and y-directions may be 
readily carried out to yield the following 
expression: 

C' 
U ~ = � 8 9  (~%)2dx (25) 

where (z k --zk_ 1 ) is the thickness of  the kth ply, 
the plies being numbered starting from the z = -- 
(h/2) surface of the beam. The terms given in 
Equations 22 may now be used to expand the 
definition of 3,~ given in Equations 9 to yield the 
following expression: 

o F~ ,n + Cm COS 
m 

(m = 1 ,3 ,5 . . . )  (26) 

where E,n and Cm are evaluated using Equation 
21. By substituting Equation 26 into Equation 25, 
the expression for the transverse strain energy 

within the kth ply becomes 

_ ~ H k  k 2 b i k  = �89 Zk-1 ]~.S5 1 

fo ~ [(m~Em+Cm)cos~-X] 2dx, 

(m = 1,3, 5 . . . ) .  (27) 

It follows that the strain energy due to the 
transverse shear stress in a laminated beam is the 
sum of the energies within each ply. The expression 
for the transverse shear strain energy is 

n k 2 
u = u'~ = Z �89 - - ~ k - , ) ~ s ~ b  

k = l  k=l 

(m = 1,3, 5 . . . ) .  (28) 

An expansion of Equation 11 shows that the 
definition of the material parameter Ass is as 
follows: 

Ass = ' ~  ( z k - - z k - , ) ~ s .  (29) 
k = l  

The total transverse shear strain energy expression 
for a three-point flexure specimen thus becomes 

U = 1 2 ~Asskl b 

cosT] 
(m = 1,3, 5 . . . ) .  (30) 

The terms of the summation within the 
brackets of the integral are orthogonal over the 
interval 0 ~<x ~<s. Therefore, all cross-product 
terms such as cos (mrrx/s) cos [m + 1)rrx/s] inte- 
grate to zero over the interval 0~<x ~<s. The 
integration of Equation 30 may thus be readily 
performed, resulting in the following final form 
for the expression of the transverse shear strain 
energy: 

U -  Assk~ ~ (mTrEm + cm) \ s 

(m = 1 , 3 , 5 . . . )  (31) 

where s is the length of the beam, b is the width, 
and Ass is a material parameter of the beam 
defined in Equation 29, and readily available from 
calculations performed in Computer Pro gram AC-3. 
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At this point, all of  the variables and material 
parameters are available except a value for the 
shear correction factor k l .  Whitney has shown 
that the value of the shear correction factor k~ is 
a function of  the orientation of the plies within 
the beam and the material properties of  each ply 
[8]. Therefore, a value of kl for each material 
system and specimen configuration must be cal- 
culated in order to determine the contribution of 
the transverse shear strain energy to the strain 
energy stored within the given beam. 

The value of the shear correction factor k~ can 
be determined either analytically or by experi- 
mental means. Whitney [8] has described a 
method of calculating the value of kl which re- 
quires the solution of n + 1 simultaneous algebraic 
equations. Bert [10] has derived a method dif- 
ferent than Whitney's for analytically calculating 
the values of kl for beams subjected to cylindrical 
bending. Bert's method reduces to one single 
expression for determining k t .  However, the 
expression contains functionswhich he has defined 
as the partial stiffness of  the beam, and must be 
generated in the present investigation, the analytic- 
al methods of determining kl were forgone in 
wise continuous for laminated beams in which the 
individual plies have different physical properties. 

The experimental method of calculating the 
shear correction factor k~ is much more straight- 
forward, and requires far less complex calculations. 
Since the experimental data which are needed to 
calculate the shear correction factors were already 
generated in the present investigation, the analyti- 
cal methods of determining kt were forgone in 
favour of  the experimental technique. 

The experimental technique of determining the 
shear correction factor k~ consisted of accounting 

TAB LE II Analytically determined flexural moduli of thick 

for the transverse shear effects on the value of the 
flexural moduli of the specimens when subjected 
to three-point flexure loadings. First, the flexural 
modulus for each material and specimen con- 
figuration was calculated using the experimentally 
determined deflection and load in the following 
equation: 

E~ - 4bh3 (32) 

where P is the applied load and 8 is the midspan 
deflection. The load-displacement curves of the 
flexure test supplied the data necessary for these 
calculations. The last column of Table II lists the 
values of the flexural moduli of  the thick test 
specimens, as calculated using the experimental 
values from the load-deflection curves. The 
deflection 6 of the flexure specimen at the mid- 
span is equal to w, as defined in the third of 
Equations 22, evaluated at the midspan, i.e. at 
x = s/2. The flexural modulus of  the beam may 
thus be analytically determined by calculating 8 
for an arbitrary load Po, then using these values in 
Equation 32. 

The value of the shear correction factor kl was 
determined for each material system and specimen 
configuration by iterating through a range of 
values of kl until the calculated flexural modulus, 
obtained from the analytically determined mid- 
span deflection, matched the experimentally 
determined value. 

The value of the shear correction factor for 
each of the thick specimens is listed in the sixth 
column of Table II. The values of  the material 
parameters Ass and D11, required in the cal- 
culations of Equations 22, are listed respectively 

static flexure specimens 

Material Specimen Flexural modulus 
designation con- calculated using 

figuration Equation 33 

(GN m -2) (106 psi) 

A ss D 11 k i Flexural modulus 
calculated using 

(MN m-1 ) (10 s lb in-1 ) (kN-m) ( 1 0  4 in.-lb) 
Equation 32 

GNm -2) (10 ~ psi) 

5 2 0 6  longitudinal 88 12.8 
control transverse 19 2.7 

5206/120 longitudinal 71 10.3 
glass transverse 23 3.3 

5206/A1 longitudinal 62 9.0 
transverse 19 2.7 

5206/$2 longitudinal 77 11.1 
glass transverse 19 2.7 

5206/Ti longitudinal 85 12.4 
transverse 39 5.7 

36.8 2.1 3.2 2.8 0.66 40 5.8 
28.0 1.6 0.9 0.8 0.48 14 2.1 
38.5 2.2 2.6 2.3 0.64 37 5.3 
33.3 1.9 1.0 0.9 0.51 17 2.5 
50.8 2.9 2.9 2.6 0.51 26 3.8 
43.8 2.5 1.1 1.0 0.42 13 1.9 
36.8 2.1 2.7 2.4 0.62 35 5.1 
28.0 1.6 0.9 0.8 0.53 15 2.2 
68.3 3.9 5.9 5.2 0.21 6.2 0.9 
61.3 3.5 3.1 2.7 0.21 5.5 0.8 
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in the fourth and fifth columns of Table II. 
An additional point of interest is the actual 

amount by which the transverse shear strain 
affects the calculations of the ftexurat modulus 
for composite beams. Using classical laminated 
plate theory, which neglects transverse shear strain 
effects, and neglecting Poisson effects, an 
expression for the flexural modulus can be shown 
to be [31 

k = l  
Ef = (33) 

I 

where E k is the tensile modulus of  the kth ply, zk 
is the distance from the midplane of the beam to 
the kth ply, and A k is the cross-sectional area of  
the kth ply. The term I is the moment of inertia 
of  the entire cross-section of the beam. 

The values of the flexural modulus of the 
various thick flexure specimens as calculated using 
Equation 33 are listed in the third column of 
Table II. It is evident by comparing the values of 
the third column to the values of the last column 
of Table II that the transverse shear strains reduce 
the flexural modulus of a beam. The difference is 
most evident for the longitudinal specimen con- 
figurations. The deformations due to the trans- 
verse shear stress are usually more pronounced for 
highly anisotropic beams. One measure of the 
degree of anisotropy of the material, which is 
important in characterizing the amount of de- 
formation of the material, is the ratio of the 
longitudinal tensile modulus Ex to the longitudinal- 
transverse shear modulus Gxz. This ratio, Ex/Gxz, 
was much larger for the longitudinal specimens of 
the present study than for the transverse speci- 
mens, thus the transverse shear effects were much 
more pronounced for the longitudinal specimens. 

The values of the shear correction factor kl for 
each of the material systems, for the thick static 
flexure specimens as listed in the sixth column of 
Table II, were used in the calculation of the strain 
energy due to transverse shear strains (Equation 
31). The calculated values of the strain energy due 
to transverse shear strain effects are listed in the 
fifth column of Table I. 

The sums of the flexural strain energy (listed in 
the fourth column of Table I) and the transverse 
shear strain energy" (listed in the fifth column) are 
tabulated in the sixth column. The comparison of 
the calculated values of the strain energy to the 
energy represented by the area beneath the load-  

deflection curve to the point of maximum load 
is quite good. This indicates that, for the thick 
static flexure specimens used in this study, which 
have an s/h ratio of  approximately four, at least 
half of the strain energy stored within the speci- 
mens was transverse shear strain energy. The good 
comparison between the values in the sixth and 
seventh columns of Table I indicates that all of 
the energy represented beneath the load-deflection 
curve for the static flexure specimens is stored as 
strain energy within the beam. With this fact in 
hand, a better evaluation of the Charpy impact 
tests can be made. 

6. Energy associated with the Charpy 
impact test 

The behaviour of  the hybrid material systems sub- 
jected to impact, as studied during the present in- 
vestigation, was more amenable to analysis than in 
previous investigations because direct correlations 
could be made with the behaviour of identical 
specimens subjected to three-point static flexural 
loadings. A few of these comparable quantities are 
the flexural modulus, the initial fracture energy 
(obtained by integrating the area under the load-  
deflection trace to tile point of maximum load, i.e. 
to the point of assumed initial fracture), the 
maximum load, and the energy dissipated in the 
total failure of the specimen. 

A substantial difference in behaviour occurred 
between the Charpy impact specimens and the 
static flexure specimens, for all of the material 
systems considered in this investigation. The 
distinction was present in both the thick and thin 
test specimens. One of the most obvious mani- 
festations of the difference in behaviour was the 
difference in the amount of energy which was ob- 
tained by integrating the load-deflection trace to 
the point of maximum load. These energy values, 
normalized by dividing by the specimen cross- 
sectional area, for the thick Charpy impact speci- 
mens, are listed in the fourth column of Table III. 
The energy values obtained by integrating the 
load-deflection curve to the point of maximum 
load, then normalizing by dividing by the cross- 
sectional area of the Specimen, for the "static" 
flexure tests of the thick specimens, are repeated 
from Table I in the third column of Table III. 

It is clear that the amount of  initial fracture 
energy associated with the Charpy impact speci- 
mens of each material system was always greater 
than the similar energy associated with the 
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TABLE I11 Initial fracture energies (normalized) and peak loads of the thick Charpy impact and static flexure 
specimens* 

Materiat Specimen Static flexure Charpy impact Static flexure C~arpy impact 
designation configuration initial fracture energy initial fracture energy peak load peak load 

(kJ m-2 ) (ft-lb iny 2 ) (kJ m -2 ) (ftqb in_2 ) (kN) fib) (kN) fib) 

�9 5206 control longitudinal 17.4~ 8.3 29.00 13.8 4.96 1 1 1 4  5 . 1 3  t153 
transverse 14.92 7.1 14.29 6.8 2.84 638 2.18 491 

5206/120 longitudinal 15.97 7.6 29.84 14.2 4.43 996 4.27 960 
g lass  transverse 15.97 7.6 22.07 10.5 3.09 694 2.74 615 

5206/A1 longitudinal 11.77 5.6 20.17 9.6 3.83 861 4.14 930 
transverse 11.98 5.7 15.97 7.6 2.90 651 2.86 643 

5206/$2 longitudinal 10.72 5.1 21.02 10.0 3.67 824 4A3 997 
~ass transverse t0.93 5.2 I0.30 4.9 2.43 546 2.06 464 

5206/Ti longitudinal 1.47 0.7 13.66 6.5 0.92 207 1.31 295 
transverse 1.05 0.5 2.52 1.2 0.70 158 0.79 t78 

* Typically an average of three test specimens. 

corresponding static flexure specimens. Also, the 
difference between the initial fracture energy of 
the Charpy impact specimens and the static 
flexure specimens was greater for the longitudinal 
configuration than it was for the transverse beams. 
The initial fracture energy values associated with 
the longitudinal static flexure specimens were 
typically only 53 to 60% as large as the corres- 
ponding values for the Charpy impact specimens. 
One exception was the ratio of these corres- 
ponding energies for the Modulite 5206/Ti hybrid 
material system, which was exceptionally low at 
only 11%. The initial fracture energy values for 
the transverse static flexure specimens were, in 
general, from 72 to 106% as large as the corres- 
ponding values for the Charpy specimens of  the 
same configuration, with the Modulite 5206/Ti 
hybrid system again yielding an abnormally low 
value. 

The increased amount of  energy which can be 
input to a Charpy impact specimen relative to a 
static flexure specimen is apparently not a 
function of  the thickness of the specimen. The 
specimens which were cut from the thin panels 
were all of the longitudinal configuration. Al- 
though not listed here, the ratio of the initial 
fracture energy values for the Charpy impact tests 
were, for most of the thin panels, within the same 
range as the ratios for the longitudinal thick 
specimens [3]. 

The load-deflection traces were linear to the 
point o f  maximum load for both tests. Therefore, 
in order to account for the greater amount of 
energy absorbed by the Charpy specimens, a study 
of  the peak loads sustained by each specimen in 
both types of  tests was made. The average values 

of  the peak loads for the static three-point flexure 
specimens are listed in the fifth column of Table 
III, and the corresponding values for the Charpy 
impact specimens are listed in the sixth column of 
the same table. The average peak loads for the 
Charpy impact specimens were not substantially 
greater than the corresponding loads for the 
static flexure specimens. In fact, as can be seen 
from Table III, some of the average peak loads 
for the static flexure specimens were actually 
even greater than the values for the Charpy 
impact specimens. A comparison of the average of 
all of  the peak loads for the Charpy impact speci- 
mens with the average of all of  the peak loads for 
the static flexure specimens shows that the value 
of  the latter is only about three percent less than 
the average value of all of  the peak impact loads. 

The difference in the initial fracture energies of  
the Charpy impact specimens and the static 
flexure specimens is evidently attributable to a 
difference between the flexure modulus of the 
two types of test specimens. Fig. 3 is an illustration 

STATIC FLEXURE CHARPY IMPACT 
Z - - - -  TRACE X - ~  TRACE 

A 
E k/ '-, . \"q . . . -YYY/ / .YJ "~- 
c I 

I 

DEFLECTION, g 

Figure 3 Comparison of the initial portion of a typical static 
flexure trace and a corresponding Charpy impact trace. 
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of typical load-deflection traces (reduced to the 
same scale) for a Charpy impact test and a static 
flexure test of identical specimens. The traces are 
both linear to the point of  maximum load, and 
the peak loads are typically approximately equal; 
but the energy of the Charpy impact specimen, 
which is represented as the area under the trace, 
is greater t h a n  the energy associated with the 
flexure specimen. The energy associated with the 
impact test is greater because the flexural modulus 
of the impact specimen is less than the modulus of 
the static flexure specimen. It is believed that this 
observation may be significant to the eventual 
explanation of the mechanisms controlling the 
impact event. Although the present conclusions 
are felt to be somewhat premature, further in- 
vestigation is expected to disclose the full nature 
of the parameters involved. 

7. Discussion 
It is clear, from the analysis shown here, that the 
transverse shear stresses occupy a major role in the 
behaviour of both the dynamic and static flexure 
tests for specimens of the standard Charpy impact 
specimen geometry. These effects increase the 
amount of midspan deflection in both the static 
and impact three-point flexure tests. The analysis 
has shown that at least half of the total strain 
energy which is stored within a flexure specimen 
of  the geometry of a standard Charpy impact 
specimen, when subjected to a "static" flexural 
loading, is due to the transverse shear strain. 

The calculations performed here also strengthen 
the supposition that, for static three-point flexure 
tests, the energy integrated beneath the load-  
deflection trace to the point of maximum load is 
stored strain energy within the specimen, and only 
a minimal amount of energy is dissipated in 
damage before the peak load is attained. From 
these results it may be concluded that the most 
significant material characteristics of  hybrid com- 
posites may not be adequately emphasized by 
using a beam specimen of the dimensions of the 
standard Charpy specimen. That is, the important 
material characteristics which are needed for 
impact design purposes may be masked by the 
transverse shear effects introduced by the small 
s/h ratios of the Charpy specimens. 

The limitations of the Charpy-type impact test 
discussed here are consistent with those which 
have long made the use of the flexure test for 
measuring the static properties of composite 

materials questionable. That is, the highly aniso- 
tropic nature of the composite, combined with 
the often grossly different mechanisms of failure 
in tension (cleavage, fibre debonding, fibre pull- 
out) and compression (ply buckling, fibre micro- 
buckling, shear crushing), typically lead to a very 
unpredictable failure mode. This is further compli- 
cated in a very small s/h ratio specimen by the 
complex local stress states induced at the points of 
load application and specimen support. The short 
thick specimen requires a relatively high applied 
force to cause failure, but allows little length over 
which to uniformly redistribute this concentrated 
force. 

The use of  a thinner specimen in the present 
study does not appear to be the proper solution. 
Although some of the above disadvantages were 
reduced, the general limitations remained. The 
authors and their colleagues have experimented 
with the use of  a tensile impact test as a means of 
obtaining a simple stress state. This, of course, can 
be augmented by compressive impact and pure 
shear impact tests, in order to fully characterize a 
composite material. While results to date [11] 
have not been satisfactory because of specimen 
gripping problems, the concept appears t o  be 
sound. The further work being planned should 
resolve these problems. The use of a tensile impact 
test would eliminate many of the problems 
discussed above, and make the use of a relatively 
complex analysis such as presented here un- 
necessary. However, until the Chapry impact test, 
and the somewhat similar Izod impact test, both 
long time industry standards, are displaced, the 
problem of attempting to interpret the results ob- 
tained will remain. 

It was particularly interesting that the hybrid 
composite materials evaluated in the present study 
were able to sustain approximately the same 
amount of load when impacted as when loaded 
quasi-statistically. However, these materials de- 
flected much more before fracture occurred when 
subjected to impact loadings, thus the integration 
of the impact load-deflection trace to the point 
of  maximum load resulted in much more energy 
than the corresponding energy of a static flexure 
test. This was not an isolated observation, how- 
ever. The same trend has been noted in our prior 
investigation [1, 5],  and confirmed by the pub- 
fished results of others [12]. Thus, there appears 
to be little question as to the reliability of  the 
data. Among these various studies, a wide range 
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of  material configurations have been tested. 

The reason for the greater amounts of  energy 
beneath the load-def lec t ion  trace for the impact 
tests as compared to the static tests is as yet  in- 
definite. However, strong indications place the 
cause of  this type of  observed behaviour on some 
rate dependent  behaviour of  the constitutive 
materials of  the composite.  It has been proposed 
by  Harris [13] that the non-uniform interlaminar 

shear stresses induced in composite plates (or 
beams) of  finite width may be a contributing 
factor. He suggests that  the large shear stresses 
which  are developed at the free edges can be 
dissipated somewhat by creep in the polymer 
matrix in a "s tat ic"  flexure test, while at high 
loading rates there will be no time for this to 
occur. Harris supports this possibility with his 
observation that the interlaminar shear strength o f  
a composite decreased with increased rate of  
loading. Obviously, this entire rate dependency 

aspect will require considerably more study. It is 
interesting, however, that Plenger [11 ] also noted 
a rate dependence in his axial tensile static and 
impact tests of  unidirectionally-reinforced graphite/ 

epoxy and glass/epoxy composites. In these tests 
the effects of  shear stresses would presumably be 

small. 
Inertia effects as a possible cause of  the ob- 

served behaviour are highly unlikely since these 
types of  effects should appear as sharp spikes in 
the initial port ion of  the l o a d - t i m e  traces, which 
although they would add to the energy to the 
point  of  maximum load, could still be detected.  
No such sharp spikes were observed in the initial 

portions of  the present l o a d - t i m e  traces. 
In order to actually accotmt for the additional 

energy involved in the impact event as compared 
to the static flexure test,  it may be necessary to 
first evaluate the rate dependence of  the con- 
sti tuent materials of  the hybrid composite.  

Acknowledgements 
The investigation upon which this paper is based 
was sponsored by the Naval Air Systems Command, 
Washington, D.C., under the direction of  Mr 
Maxwell Stander. The authors wish to thank Mr 
J. L. Perry of  the Aeronutronic Division of  Aero- 
nutronic Ford Corporation, who generated all of  
the experimental  data used here. 

References 
1. J.L. PERRY, J. L. KIRKHART and D. F. ADAMS, 

Final Report, Naval Air Systems Command, Contract 
N00019-73-C-0389, Aeronutronic Division, Philco- 
Ford Corporation, March 1974. 

2. J. L. PERRY and D. F. ADAMS, Composites 6 
(1975) 166. 

3. J. L. PERRY, D. F. ADAMS and A. K. MILLER, 
Final Report, Naval Air Systems Command, Contract 
N00019-74-C-0229, Aeronutronic Division, Philco- 
Ford Corporation, January 1975. 

4. D. F. ADAMS and J. L. PERRY, J. Testing and 
Evaluation, 5 (2) (1977). 

5. D. F. ADAMS and A. K. MILLER, Mat. Sci. Eng. 19 
(1975) 245. 

6. "Advanced Composites Design Guide, Volume II - 
Analysis," 3rd Edn., (Air Force Materials Laboratory, 
Dayton, Ohio, January 1973). 

7. N.J. PAGANO, J. Comp. Mater. 3 (1969) 398. 
8. J.M. WHITNEY, ibid 6 (1972) 426. 
9. N. J. PAGANO and A. S. D. WANG, Report No. 

AFML-TR-71-143, Air Force Materials Laboratory, 
October 1971. 

10. C.W. BERT, J. Comp. Mater. 7 (1973) 525. 
11. J. H. PLENGER, M. S. Thesis, University of 

Wyoming, December 1975. 
12. L. J. BROUTMAN and P. K. MALLICK, Air Force 

Office of Scientific Research Report AFOSR-TR- 
75-0472, Illinois Institute of Technology, November 
1974. 

13. B. HARRIS, "Carbon F~res in Engineering", edited 
by M. Langley, (McGraw-Hill, London, 1973)pp. 
27 -28.  

Received 28 October 1975 and accepted 16 February 
1976. 

1710 


